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Abstract: Methamphetamine (Meth) is an addictive psychostimulant widely abused around the world. The chronic 
use of Meth produces neurotoxicity featured by dopaminergic terminal damage and microgliosis, resulting in seri-
ous neurological and behavioral consequences. Ample evidence indicate that Meth causes microglial activation and 
resultant secretion of pro-inflammatory molecules leading to neural injury. However, the mechanisms underlying 
Meth-induced microglial activation remain to be determined. In this review, we attempt to address the effects of 
Meth on human immunodeficiency virus (HIV)-associated microglia activation both in vitro and in-vivo. Meth abuse 
not only increases HIV transmission but also exacerbates progression of HIV-associated neurocognitive disorders 
(HAND) through activation of microglia. In addition, the therapeutic potential of anti-inflammatory drugs on amelio-
rating Meth-induced microglia activation and resultant neuronal injury is discussed.  
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Introduction

Methamphetamine (Meth) is a highly-abused 
psychostimulant and the second most widely 
used illicit drug worldwide (after cannabis) [1]. 
Chronic abuse eventually leads to the neuro-
toxic regimen, which induces the psychological 
and behavioral abnormalities, such as increa- 
sed aggressive behavior and craving for the 
drug [2-5]. The long-term neurotoxic effects  
of Meth are well established by neuroimaging 
studies and psychological tests and confirmed 
in both rodents and non-human primates [6-8]. 
Although the primary target of Meth is dopami-
nergic terminal, the neuropathological changes 
are not only limited in the striatum. A broader 
scope of the neural injury has been observed in 
human subjects with a decreased volume of 
the hippocampus and the hypertrophy in white 
matter [9]. Repeated administration of Meth 
also impaired cognitive function, which could 
be partially explained by current dopamine-
based neurotoxic mechanisms [10-13], sug-
gesting other mechanisms may be involved in 
Meth-associated neuropathology. Increasing 
evidence indicate that neuroinflammation fea-

tured by microglial activation plays an impor-
tant role in Meth-induced neurotoxicity (Figure 
1). The notion is supported by recent studies 
that anti-inflammatory drug ibudilast attenuat-
ed Meth dependence and Meth-induced neural 
injury [14-17]. 

Studies have shown that microgliosis is an early 
response to Meth abuse and such a response 
lasts for a long time even after abstinence [18, 
19]. Over-activated microglia are found in mul-
tiple brain regions in individuals with Meth 
abuse, but not in those with cocaine use [19, 
20]. The time-course, dose-response, and phar-
macological profiles of Meth-induced microglial 
activation indicate that over-activated microglia 
are not merely a response subsequent to nerve 
terminal damage, but a specific pharmacologi-
cal marker of Meth-induced neurotoxicity [18, 
21]. As microglia are regulated by a variety of 
inhibitory signals such as CX3CL1, CD200, 
CD22, or CD172 [22-24], the impact of repeat-
ed Meth administration on inhibitory signaling 
molecules in central nervous system (CNS) 
were investigated as the potential therapeutic 
targets [25, 26]. On the other hand, since the 
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release of neurotoxins including pro-inflamma-
tory cytokines and super oxidative factors are 
the primary neuronal toxic mediators of microg-
lia [27], the production of these pro-inflamma-
tory mediators after Meth treatment was ana-
lyzed [28]. However, the results on the immune 
modulatory effects of Meth are inconsistent. 
While its suppressive role was reported in most 
studies in the peripheral immune system [29-
32], Meth was primarily considered as a pro-
inflammatory mediator in the CNS [33-35]. A 
recent study on cultured microglia showed that 
Meth had limited impacts on microglia produc-
tion of proinflammatory cytokines indicating 
the biological and molecular intricacy of this 
drug [36]. Further investigations on potential 
roles of the other CNS-specific factors and neu-
ronal danger-associated molecular patterns 
(DAMPs) are needed. Meth dependence is one 
of the most common co-morbid conditions 
among the HIV-infected population [37]. In 
comparison with the independent effect of 

Meth abuse or HIV infection, the combined 
action of HIV infection and Meth dependence 
resulted in more severe impairment on neuro-
cognition [38-40]. Studies on the interactions 
between Meth and HIV proteins in animal mod-
els have demonstrated their synergistic effects 
on cognitive deficits [40, 41] and altered behav-
iors [42, 43]. However, the precise mechanisms 
underlying Meth exacerbation of HAND remain 
unclear. It has been shown that Meth-taking 
patients with HIV encephalitis (HIVE) exhibited 
a significant microgliosis, but not astrogliosis 
[44], suggesting that enhanced microglial acti-
vation underlies the cross-talk of HIV-1 infec-
tion and Meth dependence. Moreover, Meth 
abuse enhances opportunistic microbial brain 
infection [45, 46] and increases lipopolysac-
charide (LPS)-mediated human macrophage 
production of proinflammatory cytokines [47]. 
LPS was found to potentiate Meth-associated 
neurotoxicity [48]. Based on these results, 
whether chronic Meth abuse could enhance 

Figure 1. Schematic diagrams illustrating the roles played by microglia in health and disease (Meth abuse) condi-
tions. In health, microglia activation is restricted by neuronal immunosuppressive signals. In turn, the microglia 
secretes neurotrophic factors to support the neuronal function. In Meth abuse condition (disease), however, Meth 
causes neuronal cell damage, especially the dopaminergic neuronal terminals. The damaged neurons release 
danger-associated signals leading to microglia activation. The activated microglia produces proinflammatory sub-
stances (neurotoxins), exacerbating Meth-associated neurotoxic activity. Thus, inhibition of microglia activation and 
resultant production of proinflammatory substances could be an important strategy for therapeutic intervention.  
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the pre-existing neuroinflammation and pro-
mote the progression of another comorbid dis-
ease are emerging topics that are worthy of 
further investigation. 

Acute and chronic consequences of Meth 
abuse

Meth is a synthetic lipophilic drug that is blood 
brain barrier (BBB) permeable [49]. It derived 
from amphetamine, but with higher binding 
affinity to monoamine transporters [50]. Meth 
administration induces a remarkable outflow of 
monoamines from synaptic vesicles to cytosol 
on presynaptic neuron [51-53]. By reverse 
transportation and freely diffusion, Meth induc-
es potent efflux of dopamine to postsynaptic 
site causing strong and long-lasting euphoric 
effect. A comparable dopamine dynamic study 
suggested that single injection of Meth on the 
concentration of 2.5 mg/kg induced around  
5 times of dopamine release compared to 
cocaine on 40 mg/kg [54]. Because it is easy to 
synthesize and is much more potent on psycho-
stimulant effect than other stimulants, Meth 
has already widely abused all around the world. 

The instant effects of Meth include increased 
attention, activity, and wakefulness; decreased 
fatigue and appetite; euphoria and rush experi-
ence. Hyperthermia and irregular heartbeat are 
two most prominent toxic effects of hyperther-
mia and irregular heartbeat overdose [49]. On 
the other hand, chronic use of Meth induces a 
series of negative consequences including 
addiction, anxiety, confusion, insomnia, mood 
disturbances, and violent behaviors [55]. In 
addition to these psychotic symptoms, chronic 
abusers are often associated with cognitive 
deficits ranging from impaired pulse control, 
working memory and decision-making [56-58]. 
These symptoms are accompanied by the 
Meth-induced neuropathological changes inc- 
luding the damage to dopamine and serotonin 
axons, loss of gray matter, hypertrophy of the 
white matter, and microgliosis. Neuroimaging 
studies with specific probes implicated a mono-
amine transporter reduction and dopaminergic 
terminal degeneration [59, 60]. Moreover, mag-
netic resonance imaging (MRI) studies indicat-
ed that Meth-associated neurodegeneration 
was not restricted to the striatum [9, 61]. Con- 
siderable shrinkage of hippocampi, gray mat-
ter, cingulate cortex, limbic cortex and paralim-
bic cortex was observed in recreational abus-

ers [9]. Multiple neurotoxic events are associ-
ated with Meth abuse including oxidative str- 
ess, excitotoxicity, hyperthermia, mitochondrial 
dysfunction, endoplasmic reticulum stress, and 
neuroinflammatory responses. Here, we pri-
marily focus on neuroinflammation associated 
with microglial activation.  

Microgliosis: a neurotoxic marker of Meth ad-
diction

Microglial activation is characterized by prolif-
eration, morphologically change, migration and 
inflammatory secretion profiles [62]. It is well-
established that the activation of microglia is 
relative to neurodegenerative diseases, brain 
injury and toxicant-induced damage to the CNS 
[63]. In animal model injected with Meth, micro-
gliosis was found in multiple brain areas [64]. A 
human study validated the remarkable microg-
lial activation in all brain regions using positron 
emission tomography (PET) with a specific 
radiotracer [19]. The dose- and time-response 
of Meth-induced microglial activation perfor- 
med on Meth-administrated rat indicated that 
microglial response preceded both terminal 
neuronal degeneration and astrocyte activa-
tion [18]. As it is difficult to differentiate infil-
trated monocyte/macrophage with activated 
microglia by immunohistochemistry staining, 
the possibility that Meth increases the traffick-
ing of peripheral immune cells into the brain 
needs to be further proved. The irradiated mice 
were rescued with bone marrow transplanta-
tion from “green mice”, a transgenic mouse line 
with an enhanced GFP (eGFP) expression in all 
tissues except for erythrocytes and hair. To 
determine if Meth increases the peripheral 
monocyte infiltration, the peripheral monocytes 
in the brain with eGFP were detected after 
Meth administration. Two days after four injec-
tions of neurotoxic regimen of Meth (5 mg/kg) 
and/or physiological saline in with a 2-h inter-
val, the brains were harvested, fixed and the 
sectioned. The stratum sections were exam-
ined under fluorescent microscope. While the 
resident microglia were significantly activated 
in the striatum, no infiltrated eGFP-expressing 
cells (migrated hematopoietic cells) were 
detected [25]. Although this study suggests 
that there is no evidence of transmigration of 
peripheral hematopoietic cells cross the BBB in 
response to Meth administration, the role of 
BBB impairment in Meth-induced neuroinflam-
mation is still in debate. The alteration of BBB 
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permeability was found shortly after Meth 
administration and lasted long in multiple brain 
areas including stratum, amygdala, and hippo-
campus [65, 66]. Moreover, Meth application 
was found to induce the oxidative stress in cul-
tured primary human brain microvascular endo-
thelial cells (BMVEC) [67]. The impairment of 
barrier function of BBB was determined both in 
vivo using fluorescent tracer and in vitro via 
transendothelial electrical resistance (TEER) 
test. The application of Meth diminished the 
tightness of BMVEC monolayers by decreasing 
the expression of cell membrane-associated 
tight junction proteins and thus, enhanced the 
monocyte transendothelial migration [67]. The 
increased monocyte passage through the 
endothelial cells monolayer can be blocked by 
a specific inhibitor of Arp 2/3 complex, indicat-
ing that actin cytoskeletal dynamics play an 
important role in Meth-induced transendotheli-
al monocyte migration [68]. Taken together, 
although the Meth-induced microglial activa-
tion is validated in both animal models and 
human abusers, it is still controversial whether 
Meth-associated inflammatory response is 
mediated by the resident microglia other than 
the peripheral immune cells infiltration. 

To determine the mechanism of microglial acti-
vation, various experimental groups were 
designed to mimic selected pharmacological 
elements of Meth action [21]. As another psy-
chostimulant with high binding affinity with 
plasma dopamine transporter, cocaine failed to 
trigger microglial activation in Meth adminis-
trated rat [21]. Also, the administration of co- 
caine was found less relative to long-term neu-
rotoxicity [20, 69]. The involvement of dopa-
mine receptors in Meth-induced microglial acti-
vation was also evaluated. However, neither D1 
nor D2 receptor agonist replicated Meth-
induced microglial activation, which suggested 
that microglial activation was independent of 
Meth-induced release of dopamine [21]. Fur- 
thermore, the levorotary enantiomer of Meth 
(L-Meth), a molecular sharing the most receptor 
targets with Meth but with much less binding 
affinities, failed to activate microglia. Because 
L-Meth is much less neurotoxic compared to 
dextrorotary enantiomer [70], its failure in 
inducing microglial activation further suggests 
that Meth-induced neuroinflammation is an 
essential event in the Meth neurotoxic cas-
cade. On the other hand, the factors that miti-
gate neurotoxicity of Meth such as lower ambi-
ent temperature and NMDA receptor antago-

nists also reduce microgliosis along with their 
neuroprotective effects [18, 71]. Moreover, the 
tolerance of Meth toxicity is also associated 
with attenuated microglial activation. After a 
neurotoxic challenge with Meth, tolerance was 
developed to the subsequent neurotoxic effects 
of Meth [72-74]. Although the second Meth 
stimulation induced the same extent of hyper-
thermia and astrocyte activities, microglial acti-
vation was blunted [75, 76]. Thus, attenuated 
microglial activation was considered as an im- 
portant mechanism underlying the reduced  
Meth-induced neurotoxicity. In contrast, classi-
cal immunogen LPS administration significantly 
increased the microglial activation and potenti-
ated the Meth-induced neurotoxicity [48, 77]. 
While the astrocytes remain reactive even 30 
days after Meth administration, microglial acti-
vation subsides within 7 days, which was more 
reflecting the acute Meth-induced neurotoxicity 
[76]. Based aforementioned evidence, microg-
lial activation could be an important indicator 
of Meth-induced toxicity. 

Although in vivo experiments demonstrate a 
solid link between neurotoxicity and microglia-
mediated neuroinflammation [78], limited stud-
ies have been done on Meth effects on cultured 
microglia. While Meth receptors on microglia 
remain to be determined, it is unclear whether 
Meth-induced microglial activation is a recep-
tor-mediated effect. Therefore, testing enantio-
mers on isolated microglia may, at least in part, 
address this question because of the different 
binding affinities of the dextrorotatory/levoro-
tary forms to certain receptors. Since activated 
microglial primarily contribute to neuronal inju-
ry by releasing various neurotoxic factors, many 
studies focus on the activation of inflammatory 
signaling pathway and subsequent production 
of neurotoxins after Meth exposure. A latest 
study evaluated mRNA levels of inflammatory-
associated genes on cultured microglia stimu-
lated by various concentrations of Meth [36]. 
Proinflammatory cytokines upregulated in vivo 
were found unchanged in Meth-treated microg-
lial cultures [36]. The inflammatory responses 
on both whole brain microglia and isolated stri-
atum microglia are consistent, which means 
there is no regional specificity of microglia acti-
vation. Moreover, the IL-1β level and cell viabili-
ty were found decreased after administration of 
1 mM Meth [36]. This was consistent with previ-
ous experiments on cultured microglia, which 
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showed the apoptotic effect of Meth in 500  
μM, and could be reversed by TNFα and IL-6 
through IL-6 receptor and JAK-STAT3 pathway 
[79]. While most of the studies indicate that 
there is less possibility for Meth to stimulate 
the pro-inflammatory response directly, a study 
performed on CHME-5 cell line (Human fetal 
microglial immortalized with large T antigen of 
simian virus 40) suggested that Meth could 
reactivate HIV transcription in an NF-κB-
dependent manner. The NF-κB reporter assay 
(Luciferase System) and the p65 ELISA of 
nuclear extracts were used to examine the 
activity of this cellular transcription factors. The 
activation of NF-κB was observed in CHME-5 
cell treated with 500 µM  Meth. The activation 
effect of Meth started as early as 0.5 h and 
lasted for 24 h. Moreover, the IκB dominant-
negative construct, which lacked the phosphor-
ylation site and could not be dissociated from 
NF-κB, blocked the Meth-induced activation 
[80]. It is worth to note that the concentration 
of Meth used in those experiments was more 
than 500 µM, which was too high to represent 
the condition of long-term recreational users. 
On the other hand, the activation of microglia 
might also be a consequence of the neuronal 
release of DAMPs that stimulated by applica-
tion of Meth. High mobility group box-1 (HMGB1) 
was found upregulated after Meth administra-
tion and mediated the neuroinflammatory 
response in multiple brain areas [36]. Another 
candidate neuronal DAMP that might mediate 
Meth-induced microglial activation is DA- 
quinones (DAQ). The excess outflow of dopa-
mine induced by Meth could be self-oxidized to 
DAQ that might play an obligatory role in vari-
ous Meth-induced neurotoxic effects [81, 82], 
because researchers found DAQ causes a 
time-dependent activation of cultured microg-
lia. Gene expression study analyzed 101 genes 
alteration, in which inflammation cytokines, 
chemokines, and prostaglandins were upregu-
lated, whereas protective neuronal genes were 
downregulated [81]. The critical roles of dopa-
mine and its oxidative form in Meth-induced 
microglial activation were further demonstrat-
ed by the disruption of DA release from the 
newly synthesized pool in vivo, which abrogated 
the microgliosis [83]. Thus, the excessive 
release of dopamine from vesicles and outflow 
outside neuronal terminals might function as 
neuronal DAMPs that could be sensed by 
regional microglia and initiates the neurotoxic 
signal cascades [83]. Despite the aforemen-

tioned progresses the patterns and mecha-
nisms of microglia activation in the brain need 
to be further investigated.

The microglia neurotoxicity was initially demon-
strated in vitro with primary cultured microglia. 
After challenge with proinflammatory stimuli 
such as LPS, IFNβ, or TNFα, the supernatants 
were transferred to cultured neurons, and the 
neuronal apoptosis was observed [84]. Ever 
since these experiments, it has been well es- 
tablished that the toxic microglial secretory 
products are the major mediators of microglia-
induced neurotoxicity [85-88]. For this reason, 
it is critical to examine whether the proin- 
flammatory factors, released by microglia in 
response to Meth, are toxic to neurons. It was 
shown that microglia-associated factors, for 
example, IL-1α, IL-6, CCL2, and TNFα, were 
upregulated in mice with a single low-dose regi-
men of Meth [89]. The microglial-mediated pro-
inflammatory responses were attenuated by 
minocycline, a selective inhibitor of microglial 
activation [89]. However, the experiment using 
mice with genetic deficiency in IL-1α, IL-6, and 
CCL2 did not show neuroprotection against 
Meth [89]. Only the mice lack of the TNF1/2 
receptors showed attenuated neurotoxicity, 
indicating that TNF-α is a critical factor in Meth-
induced neurotoxicity. Thereby, it is hypothe-
sized that the failure of minocycline in neuro-
protection against Meth-associated neuronal 
damages could be attributed to its incomplete 
inhibition of TNF-α signaling pathway [89]. Cur- 
rently, neuroprotective effects targeting microg-
lial activation on Meth-related neurotoxicity in 
an animal model is controversial [89-92]. The 
disparity between these mixed results probably 
attribute to the differences in the dosing regi-
men or the time of anti-inflammatory drug 
administration. However, lack of specific selec-
tivity against downstream pathway(s) might 
also contribute to these ambiguous results. 
Further studies on identification and inhibition 
of more specific molecular targets mediating 
microglia-mediated neuroinflammation are im- 
perative.

Microglia: a potential intersecting point for 
Meth and HIV

Despite the successfulness of highly active 
antiretroviral therapy (HAART), 50% of the HIV- 
infected individuals still suffer from HIV-
associated neurological disorder (HAND) [93]. 
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The persistent neuroinflammation was found in 
HAND patients, even in the HAART era [94-97]. 
A neuroimaging study revealed that the degree 
of neuroinflammation marked by the activated 
microglia inversely correlated with the execu-
tive function even in the patient receiving HA- 
ART [98]. Meth abuse is prevalent among HIV-
infected patients, and the interaction between 
Meth abuse and HIV pathogenesis is an inter-
esting research topic for many neurovirologists 
[37, 99, 100]. In comparison to their indepen-
dent effects, Meth exposure combined with HIV 
infection produces severer impairment on neu-
rocognition [38, 39]. Studies on the interac-
tions between HIV proteins and Meth in animal 
models have further demonstrated their syner-
gistic effects on cognitive dysfunctions [40, 41] 
and altered behaviors [42, 43]. However, the 
precise mechanisms for Meth exacerbation of 
HAND are still not fully understood. More signifi-
cant microgliosis was observed in Meth-taking 
patients with HIVE, while astrogliosis was  
not changed [44]. Thus, enhanced microglial 
activation could be the intersecting point  
for the cross-talk of HIV infection and Meth 
dependence. Because neurons are refra- 
ctory to the HIV infection, the activated microg-
lia are most likely the contributors to neuronal 
damages and cognitive dysfunctions due to the 
release of neurotoxic substances [101]. On the 
one hand, Meth is associated with increased 
entry of virus into CNS system, which could be 
attributed to several potential mechanisms 
including increased peripheral viral load [102], 
reduced adherence to antiretroviral therapy 
[103], and disruption of the blood-brain barrier 
(BBB) [65, 104]. Furthermore, Meth can regu-
late the HIV replication by targeting HIV-asso- 
ciated cellular factors [105, 106]. The potential 
of dopamine to promote HIV replication is cor-
roborated in rat and monkey models with ad- 
ministration of L-DOPA [107, 108]. However, the 
dopamine concentrations used in the above 
studies were very high; it is questionable wheth-
er such high dopamine concentrations could  
be found in Meth abusers [109]. 

Recently, common molecular targets for Meth 
and HIV intersecting effects gain more atten-
tion. It has been suggested that voltage-gated 
potassium channels (Kv) are involved with neu-
ronal damage and microglial function [110]. HIV 
protein Tat and gp120 were reported to incre- 
ase the outward potassium current and proin-
flammatory cytokines release, resulting in neu-

rotoxic activity [111, 112]. The potassium chan-
nels on microglia were also associated with 
Meth neurotoxicity [113]. Thus, it is worth to 
investigate further whether Meth application 
could potentiate the Tat- or gp120-induced mi- 
croglial inflammatory response through specific 
potassium channels. In addition, some microg-
lia-associated proinflammatory cytokines that 
are crucial for the progression of Meth- and 
HIV-induced neuropathological changes are al- 
so needed to be further investigated [114-117]. 
The enhanced TNFα secreted by microglia after 
Meth stimulation might be responsible for the 
increased HIV replication [118], NMDA receptor 
neurotoxicity [119], and BBB disruption [120]. 
Likewise, upregulated IL-1β and IL-8 expression 
may also contribute to the Meth and HIV-
associated neurotoxic activities [116, 117] as 
demonstrated by their compromising effects 
on Long-term potentiation (LTP) and cognitive 
function [121, 122]. 

Meth and neuronal immunosuppressive sig-
nals 

The neuronal cells are vulnerable to the poten-
tial detrimental immune reactions. Except for a 
few limited brain areas, most neurons are in- 
competents in regenerating themselves [123]. 
Thus, in addition to the physical isolation by 
blood brain barrier, neurons express multiple 
immune suppressive signals to provide a res- 
tricted and immunosuppressed microenviron-
ment, which rapidly turns down uncontrolled 
microglial activation to prevent secondary neu-
ronal damage [22]. Those signals may be sec- 
reted by neurons including TGF-β, CX3CL1, and 
CD22 or expressed on the membrane such as 
CD200 and CD47. Among these suppressive 
signals exchanging between the neuron and 
glial cells, CX3CL1-CX3CR1 and CD200-CD- 
200R are two most well-studied axes in Meth-
associated neuronal dysfunction [25, 26]. Am- 
ple evidence shows CX3CL1 is the most promi-
nent neuron-derived signal that restricts mic- 
roglial activation after harmful environmental 
stimulization [124]. Mice homozygous with 
CX3CR1-deficient have been widely studied in 
various neurodegenerative models. Mice with 
deficient CX3CL1-CXCR1 signaling showed an 
enhanced microglial activation, resulting in 
greater neurotoxicity [125]. In Meth-induced 
neurotoxicity, while the genes of many inflam-
matory molecules were found upregulated, the 
expression levels of CX3CR1 and CX3CL1 did 
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not change [126]. Unlike the hypersensitivity of 
the neurons to MPTP-induced neurotoxicity in a 
CX3CR1 knockout mouse model, the level of 
Meth-induced hyperthermia and dopaminergic 
terminal damage were not enhanced in CX3CR1 
deficient mice [25]. It is still unclear, however, if 
the overexpressed exogenous CX3CL1 could 
downregulate Meth-induced microglial activa-
tion. Thus, although current evidence supports 
that microglial activation and neuronal damage 
induced by Meth are not mediated by CX3CR1 
signaling, the therapeutic potential of this sig-
naling axis needs further investigation. 

Another well-studied neuronal immunosuppre- 
ssive signal in Meth-induced neurotoxicity is 
CD200. The neuroprotective roles of CD200 
against microglia-induced neurotoxicity were 
reported in multiple neurodegenerative dis-
ease models [127, 128]. Consistently, CD200 
exerts protective effects on Meth neurotoxicity 
via decreasing microglial activation [26]. The Fc 
region of CD200 (CD200-Fc) was tested on 
neuron-microglia co-culture system and on rats 
before Meth treatment [26]. CD200-Fc has be- 
en proved in vitro that it suppressed the microg-
lial activation and secretion of inflammatory 
cytokines (IL-1β and TNFα) [26]. Meanwhile, the 
Meth-induced striatal neurotoxicity was also 
attenuated by the CD200-Fc application [26]. 
However, the Meth-associated microglial acti-
vation and neuronal damage were not com-
pletely blocked by CD200-Fc, indicating the 
insufficiency of the solo neuronal suppressive 
signal. Also, because Meth-induced neuronal 
damages are consisted of multifactorial and 
complicated processes, the inhibition of micro- 
glial activation might not be enough to reverse 
the toxicity of Meth completely. Lastly, it is still 
challenging to deliver the antibody drugs into 
the specific brain areas. Thus, improved deliv-
ery systems must facilitate developing the 
immunosuppressive neuronal signals adminis-
tration as a therapeutic strategy [129]. 

Therapeutic studies of Meth-induced neural 
injury

Currently, the emerging cures for Meth addic-
tion are cognitive behavioral therapy and inpa-
tient treatment. However, the therapeutic ef- 
fect is barely satisfied. Only 33% of Meth users 
finished 16 weeks of outpatient counseling and 
merely 45% patients achieved 3 weeks of Meth 
abstinence [130]. Even inpatient treatment can 

reach only 30% long-term abstinent [131]. The 
reason for this high relapse rate is the Meth-
induced neuropsychiatric impairments [132, 
133]. Long-term abuse of Meth causes struc-
tural damages to multiple brain areas followed 
by the impairment of the cognitive and psychi-
atric functions [134-136]. The Meth abstainers 
with brain dysfunctions are more likely to re- 
lapse [3, 58]. This feedback loop is the major 
obstacle to the current therapy for Meth depen-
dence. However, with limited successfulness of 
drug development based on neurotransmitter 
systems, alternative therapeutic strategies are 
needed. Because the neuroinflammation plays 
a critical role in Meth-induced neurotoxicity, 
overactivated microglia seems to be a promis-
ing target for therapeutic approaches. 

In recent years, exciting progresses have been 
made on developing an anti-inflammation strat-
egy against microglia-mediated neuronal dam-
ages [137, 138]. Minocycline is the most lipo-
philic tetracycline antibiotic that is proved for 
an anti-inflammatory effect through inhibition 
of key inflammatory enzymes, like inducible 
nitric oxide synthase (iNOS) [139], Matrix metal-
loproteinases (MMPs) [140], cyclooxygenase-2 
(COX2) [141] and Phospholipase A2 (PLA2) 
[142]. Minocycline blocked the microglial acti-
vation and attenuated the Meth-induced neuro-
toxicity [90, 143, 144]. After pretreatment of 
minocycline (40 mg/kg), the behavioral sensiti-
zation induced by repeated administration of 
Meth (3 mg/kg/day) was significantly attenuat-
ed [143]. Furthermore, the reduction of dopa-
mine and dopamine transporter (DAT) after 
Meth are also rescued by application of minocy-
cline [143]. A study performed on monkeys fur-
ther confirmed the neuroprotective effect of 
minocycline against Meth [90]. A reduction of 
DAT after repeated administration of Meth (2 
mg/kg) was observed by PET, with or without 
minocycline (200 mg). The treatment of mino-
cycline, either pre- or post-Meth administration, 
significantly blocked the DAT reduction. [90]. 
Administration of minocycline was also effec-
tive for Meth-related psychotic disorders as 
revealed in a clinical case report from Japan 
[144]. However, only one patient was involved 
in that clinical study, which was insufficient to 
perform the statistical analysis. In the latest 
years, minocycline was found to block the 
rewarding effect of Meth and reduce the self-
administrated amount of Meth on both experi-
mental animal models and human studies 
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[145, 146]. Consecutive administration of 
minocycline (20-40 mg/kg) ameliorated the 
Meth-induced impairment of long-term memory 
[147]. Most importantly, minocycline attenuat-
ed the maintenance and reinstatement of 
Meth-seeking behaviors, which indicated that 
minocycline treatment might be able to reduce 
the craving and relapse for Meth addiction 
[148]. Taken together, minocycline might break 
the aforementioned feedback loop to help 
Meth-dependent individuals quit from relapse. 
However, we also noticed that there are some 
divergent views in this regard. In contrast to the 
researches mentioned above, there are some 
other studies suggesting that minocycline is 
unable to protect neurons from Meth challenge 
[89, 149]. The discrepancies may, at least in 
part, be attributed by different doses of Meth 
employed in these studies (10 mg/kg and 20 
mg/kg). The total amount of Meth administrat-
ed with multiple times was much higher in 
those other studies. 

The interaction of the stress and Meth abuse 
has been well-studied. The unpredictable str- 
ess was not only considered as a potentiating 
factor but also a relapse inducer [16, 150]. 
Ketoprofen, an FDA-proved medication previ-
ously used to treat arthritis has recently been 
found to have a potential therapeutic effect on 
stress-induced inflammatory response in Meth-
administrated rats [151, 152]. Moreover, per-
sistent stress was also linked with increased 
microglial activation [153, 154]. To investigate 
the neuroinflammatory effects on stress-indu- 
ced potentiation of Meth toxicity, the research-
ers examined the activity of cyclooxygenase 
(COX), a well-known neuroinflammatory media-
tor, in rats exposed to both stress and Meth. 
Their results showed that the COX inhibitor, 
ketoprofen, attenuated the enhanced mono-
aminergic toxicity induced by stress as well  
as Meth administration [155]. Further experi-
ments demonstrated that an increased perme-
ability of BBB induced by neuroinflammation 
might underlie the synergistic mechanism of 
stress and Meth. Ketoprofen, applied either 
during or post the treatment, significantly redu- 
ced the impairment of BBB [151]. Despite its 
therapeutic potential on synergistic effects of 
Meth and stress, ketoprofen, however, did not 
have a protective effect on Meth alone. This is 
consistent with a previous report regarding to 
the development of COX as a potential interven-
tion target on Meth toxicity [156]. The current 

results also suggest that neuroinflammation 
may exacerbate the existing monoaminergic 
damage, and thus, promote the disease pro-
gression [157]. 

Sigma receptor (Sig-R), an endoplasmic reticu-
lum protein, has two subtypes expressed in the 
brain (Sig-1R and Sig-2R) [158]. Meth binds to 
Sig-R with preferential binding affinity on Sig-1R 
(2-4 μM), ten times higher than Sig-2R (16-47 
μM) [159]. Sig-1R has been implicated in the 
addiction and toxicity induced by Meth [160-
164]. The adaptive upregulation of Sig-1R in the 
mid-brain was observed after 5 weeks of self-
administrated with Meth [165]. Antagonists of 
Sig-1R block the Meth-induced neurotoxic ef- 
fects [163] and prevent the development of 
behavioral sensitization to Meth [164]. In the 
CNS, Sig-1R is expressed in microglia [166]. A 
sigma receptor antagonist (SN79) was found to 
suppress microglial activation and proinflam-
matory cytokine release in vivo, which blocks 
the subsequent Meth-induced neurotoxicity. In 
vitro, inhibition of Sig-1R blocked the Meth-
induced microglial apoptosis [167] and with 
pretreatment of Ditolylguanidine (DTG) or afo-
bazole, sigma receptor agonists, the ATP-indu- 
ced Ca2+ in microglia decreased and proinflam-
matory cytokine expression reduced [168]. 
Although these results suggest sigma receptor 
as a viable target, it is still too early to conclude 
that blocking Sig-1R reverse the Meth-induced 
toxicity by modulation of microglial activity. 
First, localization studies indicated that Sig- 
1R was not exclusively expressed in microglia 
[169]. Second, SN79 is also reported with at- 
tenuation of Meth-induced astrogliosis [170]. In 
cultured astrocyte, Sig-1R is involved in Meth-
induced astrocyte activation in a positive feed-
back manner [171]. More studies focused on 
the exact biochemical relationship between 
Sig-1R and Meth in microglia are needed. The 
interaction of Sig-1R and inositol 1,4,5-triphos-
phate receptors (IP3Rs) on mitochondria-asso-
ciated ER membrane (MAM) is worth to be 
investigated on cultured microglia treated with 
Meth. The potentiation of Ca2+ transmission 
between ER and mitochondria might play a role 
in Meth-induced microglial activation [172]. 

The most striking progress having been made 
recent years based on neuroinflammation is 
the use of ibudilast to treat Meth dependence. 
Ibudilast exerts its anti-inflammation effect by 
inhibition of phsphodiesterase-4 [173, 174]. 
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Because its ability to cross the BBB and sup-
press the microglial activation, ibudilast has 
been thoroughly studied for potential efficacy 
on Meth addiction. To date, Ibudilast has been 
demonstrated to be effective in reducing the 
self-administration of Meth and rate of stress-
induced Meth relapse [16, 146]. Moreover, it is 
also showed to modulate Meth-induced behav-
ioral change [15]. The neuroprotective role of 
this drug has been attributed to its inhibition of 
inflammatory response [175]. Given the fact 
that Meth is prevalent in HIV-infected patients 
and microglia are one the most important com-
mon targets that mediate the rapid progression 
of HAND in HIV patients with Meth abuse, it is 
very meaningful that ibudilast also inhibits Tat-
induced proinflammatory cytokines release 
from microglia [176]. Altogether, this pharmaco-
therapy is quite promising for Meth addiction 
and may block the potentiation effect of Meth 
on the pre-existing neurodegenerative disor-
ders, such as HAND. Currently, using ibudilast 
for Meth dependence has completed the phase 
I clinical trial for drug safety, and now is under-
taking the phase II clinical trial (NCT01860807).   

Summary

Traditionally, inflammation has four common 
cellular and molecular hallmarks: upregulation 
of proinflammatory cytokines and chemokines, 
activation macrophages ( and brain microglia), 
recruitment of leukocytes and tissue damage 
[177]. In the study of Meth-induced neuroin-
flammation, solid evidence demonstrate that 
administration of Meth could induce a substan-
tial inflammatory response [33] as shown in 
Figure 1. Upregulated inflammatory mediators 
and proliferation of microglia were found highly 
correlated with subsequent Meth-induced neu-
rotoxicity [18, 81]. The Meth-induced microglial 
activation temporally precedes the neuronal 
damage and response to Meth application in a 
dose-dependent manner, suggesting a specific 
causal relationship with Meth-induced neuro-
toxicity [18, 178]. In human abusers, overacti-
vated microglia have been found in multiple 
brain areas, which exist for years even in Meth 
abstainers [19]. Taking together, these results 
indicate neuroinflammation is a potential target 
for Meth-induced neurotoxicity. Multiple phar-
macotherapies targeting neuroinflammation 
have been carried out in experimental animals 
and demonstrated neuroprotective effects 

against the Meth-induced neurotoxicity (Figure 
1). However, because of the limited information 
on Meth’s target receptors in microglia, the pre-
cise molecular mechanism(s) for these protec-
tive drugs are still not fully understood. Given 
the possibility that the inflammatory responses 
of microglia after Meth stimulation in vivo are a 
secondary response to the neuronal DAMPs 
(i.e., HMGB1 or Dopamine-quoin), it is worth to 
investigate whether Meth could interact with 
other neuronal toxic factors to enhance the 
microglial activation in a synergistic manner. All 
in all, identification of Meth specific molecular 
receptor(s) in microglia will allow us to develop 
more specific therapeutic strategies for not 
only eventually helping abusers quit from Meth, 
but also preventing or ameliorating Meth-
induced neurotoxicity.
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